INTRODUCTION

Hypersaline ecosystems such as salt lakes are distributed globally, but differ from each other in terms of salt concentration and chemical composition as determined by local geological characteristics (de la Haba, Sánchez‐Porro, Marquez, & Ventosa, 2011; Naghoni et al., 2017; Simachew, Lanzen, Gessesse, & Øvreas, 2016; Tazi, Breakwell, Harker, & Crandall, 2014). In addition to being hypersaline, these ecosystems are often characterized by other environmental extremes such as high alkalinity, low oxygen concentration and high UV irradiation (Edwardson & Hollibaugh, 2018; Fernandez et al., 2014; Javor, 1989; Naghoni et al., 2017). Hypersaline lakes offer a unique environment for microbial life and are considered as hot spots of microbial diversity (Ley et al., 2008).

A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups

Vyacheslav Shurigin1,2 | Anna Hakobyan1,3 | Hovik Panosyan3 | Dilfuza Egamberdieva2,4,5 | Kakhramon Davranov2 | Nils-Kåre Birkeland1

1Department of Biological Sciences, University of Bergen, Bergen, Norway
2Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
3Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia
4Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, CAS, Urumqi, People’s Republic of China
5Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany

Correspondence
Nils-Kåre Birkeland, Department of Biological Sciences, University of Bergen, Bergen, Norway.
Email: Nils.Birkeland@uib.no

Present Address
Anna Hakobyan, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Abstract

During the last five decades, the Aral Sea has gradually changed from a saline water body to a hypersaline lake. Microbial community inhabiting the Aral Sea has been through a succession and continuous adaptation during the last 50 years of increasing salinization, but so far, the microbial diversity has not been explored. Prokaryotic diversity of the Large Aral Sea using cultivation-independent methods based on determination of environmental 16S rRNA gene sequences revealed a microbial community related to typical marine or (hyper) saline-adapted Bacteria and Archaea. The archaeal sequences were phylogenetically affiliated with the order Halobacterales, with a large number of operational taxonomic units constituting a novel cluster in the Haloferacaceae family. Bacterial community analysis indicated a higher diversity with representatives belonging to Proteobacteria, Actinobacteria and Bacteroidetes. Many members of Alphaproteobacteria and Gammaproteobacteria were affiliated with genera like Roseovarius, Idiomarina and Spiribacter which have previously been found in marine or hypersaline waters. The majority of the phylotypes was most closely related to uncultivated organisms and shared less than 97% identity with their closest match in GenBank, indicating a unique community structure in the Large Aral Sea with mostly novel species or genera.

KEYWORDS
archaea, bacteria, halophiles, phylogeny, prokaryotic diversity, salt lake
SHURIGIN et al. 2006; Oren, 2008). Microbes are fundamental components of hypersaline aquatic ecosystems and play essential roles in global biogeochemical cycles (Sorokin et al., 2014; Yang, Ma, Jiang, Wu, & Dong, 2016). Most culture-independent 16S rRNA based studies performed in hypersaline environments worldwide indicate a surprisingly high microbial diversity and abundance of still uncharacterized halophilic microbes (Vavourakis, 2016). Recent investigations of microbial communities from saline lakes such as the Dead Sea, the Great Salt Lake, Middle East soda lakes, African and Antarctic saline lakes have revealed the presence of all taxonomic domains, including Bacteria, Archaea, viruses and eukaryotes (Abdallah et al., 2016; Boutaiba, Hacene, Bidle, & Maupin-Furlow, 2011; Heidelberg et al., 2013; Lanzen et al., 2013; Oren, Baxter, & Weimer, 2009; Tazi et al., 2014; Ventosa, Fernández, León, Sánchez-Porro, & Rodríguez-Valera, 2014). The most abundant bacterial phyla found in hypersaline environments are Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Deinococcus-Thermus and Verrucomicrobia (Abdallah et al., 2016; de la Haba, 2011; Sirisena, Ramirez, Steele, & Glamoclija, 2018). Typical Archaea found in salt lakes belong to phylum Euryarchaeota (mainly representatives from Halobacteria class) in addition to some methanogens (Abdallah et al., 2016; Oren et al., 2009; Zhang et al., 2013). It was shown that as salinity increases, Archaea tend to dominate over Bacteria (Simachew et al., 2016).

Despite this progress, little information is available concerning the taxonomic distribution and ecological role of microbes in the Aral Sea. The Aral Sea is an endorheic hypersaline lake in western Central Asia located at the border between Uzbekistan and Kazakhstan. In the mid-20th century, the lake was one of the largest saline water bodies with 66,000 km² surface area, a total volume of about 1,070 km³ and a maximum depth of 66 m. From the 1960s, water has been diverted from rivers leading into the Aral Sea for irrigation of agricultural lands, causing a reduction of the natural flow of water into the Aral Sea by 90%. As a result, the size of the Aral Sea declined and was divided into three separate water bodies (Large Aral Sea, Lake Tschebas and Small Aral Sea), each with different physicochemical and biological features (Izhitskiy et al., 2016). Desiccation of the Aral Sea continued intensively. The average depth was reduced from 66 m to 16 m and salinity increased from 10 g/L to 120–130 g/L over 54 years (Gaybullaev, Chen, & Kuo, 2012; Rafikov & Mamadjanova, 2014).

There are many reports on the salinity level, temperature fluctuations and physicochemical properties of the Aral Sea water basin (Gaybullaev et al., 2012; Izhitskiy et al., 2016; Rafikov & Mamadjanova, 2014). Although culture-dependent studies have been reported (Aripov et al., 2016), a comprehensive understanding of the microbial community composition and structure in the Aral Sea remains elusive. The aim of this work was to describe the prokaryotic community of the hypersaline Large Aral Sea (Uzbekistan) assessed by a culture-independent approach using 16S rRNA gene library analysis. This is the first prokaryotic diversity analysis of a changing hypersaline lake caused by human activities.

FIGURE 1 Location of study site. (a) Map of the Aral Sea in 2014 showing location of sampling site in the Large Aral Sea with red mark. (b) Close-up photograph of the Large Aral Sea beach where sampling was done (44°25′41.5″N, 58°14′34.7″E). Source of map: https://www.google.com/maps
2 | MATERIALS AND METHODS

2.1 | Study site and sampling

Water samples from the south-west coastal shallow part (at 25–30 cm depth) of the Large Aral Sea (44°25′41.5″N, 58°14′34.7″E) were collected in July 2014. A map of the Aral Sea and location of the sampling site is shown in Figure 1. The meteorological and weather conditions were stable throughout the survey. Sunny weather with daytime air temperature about 42°C persisted throughout the observation period. Water samples were taken aseptically and transferred to sterile plastic containers and were brought to the laboratory within 1–2 days. Cells were harvested from ~5 L of sample which was prefiltered through paper filters (20 μm) and subsequently filtered through 0.2 μm (Whatman, Germany) nitrocellulose filters until they got clogged. Subsequently, filters with biomass were fixed in RNAlater (Sigma-Aldrich), and stored at 4°C until analysis in the lab. Filtered surface (0–5 cm) water was used for analysis of chemical composition by a Thermo Scientific™ ICAP™ 7400 ICP-OES Duo analyzer. Analyses of major and minor elements in the water revealed the following major element composition (in ppm): Na, 29755; Mg, 9575; S, 5337; K, 1799; Ca, 796; Si, 434; Sr, 74 and the following minor element composition (in ppb): Pb, 164; P, 148; Ti, 17.7; Ba 5.9; Zn 3.9; Mn, 2.6; Fe, 0.1. Salinity and pH was determined, respectively, to 14.0% with a hand refractometer (S/Mill, Atago, Japan) and to 7.7 using a PHM210 pH meter.

2.2 | DNA isolation

DNA was extracted directly from the filters carrying cells lysed in TE buffer by phenol extraction followed by ethanol precipitation according to a modified cetyltrimethylammoniumbromide (CTAB) protocol (Dempster, Pryor, Francis, Young, & Rogers, 1999). Biomass was suspended in 560 μL of TE buffer (10 mM Tris–HCl, pH 8, 1 mM EDTA). Then 30 μL of 10% SDS, 20 μL of proteinase K (20 mg/ml) and 6 μL of RNAase (10 mg/ml) were added followed by incubation at 55°C for 1 hr. Subsequently, 100 μL of 5 M NaCl and 80 μL of CTAB extraction buffer (10% CTAB in 0.7 M NaCl) were added and the mixture was incubated at 65°C for 20 min. In order to extract DNA from the suspension, an equal volume of chloroformisooamyl alcohol (24:1 v/v) was added. After centrifugation at 12,000 rpm for 10 min at 20°C, 0.6 ml of cold isopropanol was added to the aequous phase and gently mixed by hand. The tube was then left at −20°C for 30 min and centrifuged at 12,000 rpm for 15 min at 4°C. The precipitated DNA was washed with 1 ml of 70% ethanol, dried at 37°C for 30 min, and then resuspended in 30 μL of TE buffer and kept overnight at 4°C to dissolve precipitated DNA.

2.3 | PCR amplification

Extracted DNA was used as template for amplification of 16S rRNA genes by PCR. PCR was performed using a 1000-Series Thermal Cycler PCR system (BIO-RAD) with a primary heating step for 2 min at 95°C, followed by 30 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 55°C, and extension from 45 to 90 s (depending on the length of primer sets) at 68°C, then followed by a final extension step for 10 min at 68°C. Each 50 μL reaction mixture contained 10–100 ng of DNA, 10 μL of 5 × PCR buffer, 10 mM of each of the dNTPs (dATP, dGTP, dCTP, and dTTP), 0.5 μL of each primer (25 pmol/ml), 0.2 μL of Taq DNA polymerase (1.0 U; Invitrogen), 0.1% bovine serum albumin, and sterile water to a final volume of 50 μL. Universal bacterial and archaeal 16S rRNA gene oligonucleotide primer sets were used (Table 1). PCR amplified products were examined by electrophoresis using a 1% agarose gel containing GelRed (0.5 μg/ml).

2.4 | Clone library construction

The obtained PCR products were purified with GenElute™ PCR Clean-up Kit (Sigma) and cloned with TOPO TA cloning kit version O, using chemical transformation according to the manufacturer’s instructions (Invitrogen). Two (one for Archaea and the other for Bacteria) 16S rRNA gene libraries were generated. Plasmid DNA from selected clones was purified using GenElute™ Plasmid Mini-Prep Kit (Sigma) according to the manufacturer’s recommendations.

2.5 | Sequence analysis and bioinformatics

Sanger sequencing of cloned products and purified PCR products was performed using ABI PRISM BigDye 3.1 Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems) as described in the manufacturer’s protocol. The sequences obtained were edited manually in ChromasLite software Version 2.1.1 for Windows 7 and higher, and merged using EMBOSS Explorer. Chimeric 16S RNA sequences were detected with DECIPHER and were discarded. 16S rRNA gene sequences were initially compared with reference sequences at NCBI using BLAST (Altschul et al., 1997). Alignment

TABLE 1 Oligonucleotide primers used for PCR

<table>
<thead>
<tr>
<th>Target</th>
<th>Position</th>
<th>Oligonucleotide primers sequences (5′-3′)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial 16S rRNA gene</td>
<td>27F</td>
<td>GAGTTTGTATCCGGCTCA</td>
<td>Rainey, Dorsch, Morgan, and Stackebrandt (1992)</td>
</tr>
<tr>
<td></td>
<td>1525R</td>
<td>GAAAAGAGGAGATCCAGCC</td>
<td></td>
</tr>
<tr>
<td>Archaeal 16S rRNA gene</td>
<td>21F</td>
<td>TTCCGGGTGATCCYCGCGGA</td>
<td>DeLong (1992)</td>
</tr>
<tr>
<td></td>
<td>958R</td>
<td>YCCGGCGTTGAMTCCAATT</td>
<td></td>
</tr>
</tbody>
</table>

*Corresponding to 16S rRNA gene sequence position in Escherichia coli.
for phylogenetic analysis of 16S rRNA gene sequences was made by using Clustal X2 (Larkin et al., 2007). A phylogenetic tree was constructed using the neighbor joining method with MEGA 6 software (Saitou & Nei, 1987; Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). Bootstrapping analysis using 500 replicates was performed to estimate the confidence of tree topologies (Felsenstein, 1985).

3 | RESULTS

In order to obtain an overview of the microbial community, one bacterial and one archaeal 16S rRNA gene library were constructed. Twenty-five clones from each library were analyzed. Most of the obtained clones were phylogenetically associated with environmental clones obtained from similar hypersaline habitats (Tables 2 and 3). As a large fraction of the sequences shared less than 97% similarity to their closest cultivated relatives, the Aral Sea thus harbors a unique microbial community with many novel genera or species. Out of 25 bacterial sequences, 18 OTUs were identified.

Taxonomic analysis revealed a predominance of Proteobacterial phyla (64% of the clones) followed by Actinobacteria and Bacteroidetes. Within Proteobacteria, representatives from Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were found. The alphaproteobacterial sequences all clustered among the “Rhodobacteraceae” (Figure 2), with phylogenetic connections to genera Roseibacterium, Roseovarius, Marivita and Sulfitobacter. Representatives of these genera have been isolated from marine and hypersaline habitats worldwide, including Roseovarius tolerant recovered from a hypersaline, heliothermal meromictic lake in Antarctica (Labrenz et al., 1999), sharing 98.9% identity with clone B13. Some of the clones also share similarities with bacteria isolated from lobster and starfish (B6 and B15).

Only two clones (B6 and B15) belonged to Betaproteobacteria. They clustered within the Achromobacter genus (order Burkholderiales) and were highly related to environmental sequences from a Tibetan lake. Achromobacter spp. have not been recovered from marine or hypersaline habitats, but mostly from human and soil. The Gammaproteobacteria clones were affiliated with the genera Idiomarina, Pseudoalteromonas and Spiribacter. Spiribacter spp. are common in marine salterns and similar habitats (Fernandez et al., 2013; Leon et al., 2013, 2015). Two Gammaproteobacteria clones (B9 and B21) showed very close match to Idiomarina spp., including an isolate from the hypersaline Urmia Lake in Iran (Vahed et al., 2011). Clone B-12 was particularly divergent, as it shared only 85.5% identity with its closest cultured relative, Bradymonas sediminis, a marine deltaproteobacterium isolated from a coastal sediment in China and belonging to a recently described order, Bradynodales (Wang, Liu, Zhao, Du, & Chen, 2015). Slightly higher similarity (88.5% ID) was found to an environmental sequence from haloalkaline soil in India, suggesting that this bacterium might be widespread.

The Actinobacteria clones were most related (90.5%–99.7%) to environmental sequences from a Tibetan lake (Zhang et al., 2013). The closest cultured relative was Pontimonas salivibrio isolated from the seawater reservoir of a solar saltern in Korea (Jang, Cho, & Cho, 2013) and the freshwater genus “Candidatus Planktolonula” (Hahn, 2009). The Bacteroidetes clones affiliated with phyla Sapropirinae and Flavobacteria, two of which were closely related to clone sequences from a Tibetan lake (Zhang et al., 2013). The rest of the Bacteroidetes clones matched to Haliscomenobacter hydrossis, isolated from activated sludge (van Veen, Kooij, Geuze, & Vlie, 1973) and Psychrobacter salis, a halophile from a salt lake in China (Zhong et al., 2016).

The archaeal sequences were all related and formed a tight cluster within the Halobacteriaceae family in the class Halobacteria, sharing sequence similarity with the genera Halogeometricum and Halobellus (Table 3, Figure 3). The sequence identity with closest cultivated species ranged, however, only from 90.0% to 92.9%, demonstrating a striking uniqueness of the archaeal community with only novel species. The sequence similarities with environmental clone libraries were, however, much higher (97.4–99.8% ID), and matched particularly with sequences obtained from solar salterns and other aquatic hypersaline habitats in Spain and Tunisia.

4 | DISCUSSION

Chemical analyses of water samples showed that the Large Aral Sea is comparable to natural hypersaline lake ecosystems in terms of salinity and mineral composition (Izhitskiy et al., 2016). In the present study, the microbial diversity of the Large Aral Sea was investigated for the first time by culture-independent methods. 16S rRNA clone library analysis was performed to assess the bacterial and archaeal community structures.

The results from the analysis of bacterial clone library indicated a large diversity with identification of members from several additional classes (Figure 2, Table 2), all belonging to Proteobacteria, Bacteroidetes or Actinobacteria. The proteobacterial sequences were related to environmental sequences previously reported in different saline lakes, salterns and other hypersaline ecosystems worldwide, where these bacteria participate in biogeochemical cycles of biogenic elements under aerobic and anaerobic conditions (Edwardson & Hollibaugh, 2018; Paul et al., 2016; Sirisena et al., 2018). A high species richness of Alphaproteobacteria and Gammaproteobacteria observed in the Aral Sea is consistent with findings from similar environments, such as the hypersaline Urmia Lake in Iran (Vahed et al., 2011), as well as with findings from ocean and marine waters, solar salterns (Fernandez et al., 2013) and other high-salinity environments. Roseovarius and Spiribacter were the most abundant genera within Alphaproteobacteria and Gammaproteobacteria, respectively. Previous studies have also reported representatives of Spiribacter to be one of the most abundant bacterial genera in various salterns (Edwardson & Hollibaugh, 2018; Fernandez et al., 2013). Next to Spiribacter, representatives of the genus Idiomarina were abundant in Aral Sea water. Presence of Idiomarina spp. was also reported from Urmia Lake (Vahed et al., 2011). Within Betaproteobacteria, representatives of the genus Achromobacter
<table>
<thead>
<tr>
<th>Phylogenetic Affiliation</th>
<th>Clone sequence, accession number</th>
<th>Closest sequence match, accession number</th>
<th>Original Source of the closest sequence match</th>
<th>Closest species, accession number</th>
<th>% Similarity of, Closest sequence match (species match)</th>
</tr>
</thead>
</table>
| **Alphaproteobacteria** | B4
MG388257 | Uncultured bacterial clone DSFBPENV12bac_5A2, KC465657 | Salton Sea geothermal system | Roseovarius atlanticus, NR_148630 | 96.9 (94.7) |
| | B6
MG388259 | Uncultured bacterial clone M6m1-51 JN092157 | Gut microbiome of Nephrops norvegicus | Marivita litorea, NR_044513 | 95.5 |
| | B7
MG388260 | "Roseovarius algicolus", NR_148335 | Cochliidinium polykrikoides culture fluid | Roseovarius algicolus, NR_148335 | 96.8 |
| | B13
MG388266 | Uncultured Rhodobacteraceae EG8, AM691101 | Canadian hypersaline spring system | Roseovarius tolerans, NR_026405 | 99.8 (98.9) |
| | B15
MG388268 | Roseibacterium elongatum, NR_121734 | West coast of Australia | R. elongatum, NR_121734 | 96.0 |
| | B16
MG388269 | Uncultured Rhodobacter clone LA1-B32N, AF513928 | Lake in The Hawaiian Archipelago | Roseovarius pacificus, KC593284 | 93.7 (93.1) |
| | B24
MG388277 | Sulfitobacter delicatus, NR_025692 | Starfish (Stellaster equestris) | Sulfitobacter delicatus, NR_025692 | 95.8 |
| **Betaproteobacteria** | B18
MG388271 | Uncultured Achromobacter sp. clone 2SN, EU887771 | Digester of Nisargruna biogas plant, India | Achromobacter denitrificans, NR_042021 | 98.7 (96.0) |
| | B25
MG388278 | Uncultured bacterial clone SINI470, HM126867 | High mountain lake in the Tibetan Plateau | Achromobacter pulmonis, NR_117644 | 99.4 (96.2) |
| **Gammaproteobacteria** | B1
MG388254 | Uncultured bacterial clone 7658, KJ546098 | Hypersaline ponds of a marine saltern in Santa Pola, Spain | Spiritibacter salinus, NR_103952 | 100 (98.1) |
| | B5
MG388258 | Uncultured bacterial clone JS2_B08, KT318689 | Northeastern Gulf of Mexico | Pseudoalteromonas phenolica, CP013187 | 96.1 |
| | B9
MG388262 | Idiomarina sp. TBZ1 EU305725 | Hypersaline Urmia Lake in Iran | Idiomarina sp. TBZ1, EU305725 | 100 |
| | B12
MG388265 | Uncultured gamma proteobacterial clone HAHS13, HQ390704 | Haloalkaline soil, India | Bradyrhizobium sediminis, KM034744 | 88.5 (85.8) |

(Continues)
<table>
<thead>
<tr>
<th>Phylogenetic Affiliation</th>
<th>Clone sequence, accession number</th>
<th>Closest sequence match, accession number</th>
<th>Original Source of the closest sequence match</th>
<th>Closest species, accession number</th>
<th>% Similarity of Closest sequence match (species match)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>MG388267</td>
<td>Uncultured bacterial clone 7658, KJ546098</td>
<td>Hypersaline ponds of a marine saltern in Santa Pola, Spain</td>
<td>Spiribacter curvatus, NR_145955</td>
<td>100 (97.7)</td>
</tr>
<tr>
<td>B20</td>
<td>MG388273</td>
<td>Uncultured bacterial clone 7658, KJ546098</td>
<td>Hypersaline ponds of a marine saltern in Santa Pola, Spain</td>
<td>S. curvatus, NR_145955</td>
<td>99.9 (97.5)</td>
</tr>
<tr>
<td>B21</td>
<td>MG388274</td>
<td>Idiomarina sp. TBZ1, EU305725</td>
<td>Hypersaline Urmia Lake in Iran</td>
<td>Idiomarina sp. TBZ1, EU305725</td>
<td>98.7</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>B8</td>
<td>Pontimonas salivirio NR_109611</td>
<td>Seawater reservoir of a solar saltern in Korea</td>
<td>P. salivirio, NR_109611</td>
<td>96.2</td>
</tr>
<tr>
<td></td>
<td>B17</td>
<td>Uncultured bacterial clone SIN1711, HM127059</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>"Candidatus Planctoluna difficilis", NR_125495.1</td>
<td>99.1 (96.0)</td>
</tr>
<tr>
<td></td>
<td>B19</td>
<td>Uncultured bacterial clone SIN1711, HM127059</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>"Candidatus Planctoluna difficilis", NR_125495.1</td>
<td>97.5 (94.5)</td>
</tr>
<tr>
<td></td>
<td>B22</td>
<td>Uncultured bacterial clone SIN1037, HM126703</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>P. salivirio, NR_109611</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>B23</td>
<td>Uncultured bacterial clone SIN1711, HM127059</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>"Candidatus Planctoluna difficilis", NR_125495.1</td>
<td>99.7 (96.2)</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>B2</td>
<td>Uncultured bacterial clone SINH641, HM128159</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>Phaeodactylbacter luteus, NR_136808</td>
<td>100 (85.4)</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>Haliscomenobacter hydrossis, NR_074420</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>H. hydrossis, NR_074420</td>
<td>96.4</td>
</tr>
<tr>
<td></td>
<td>B10</td>
<td>Uncultured bacterial clone SINH641, HM128159</td>
<td>High mountain lake in the Tibetan Plateau</td>
<td>P. luteus, NR_136808</td>
<td>99.8 (83.9)</td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>Uncultured bacterial clone E6aH07, DQ103641</td>
<td>Hypersaline endoevaporitic microbial mat, USA</td>
<td>"Flavobacterium kamogawaensis", AB275998</td>
<td>94.2 (87.0)</td>
</tr>
<tr>
<td>Clone Sequence, accession number</td>
<td>Closest sequence match, accession number</td>
<td>Original Source of the closest Sequence match</td>
<td>Closest species, accession number</td>
<td>% Similarity, of closest sequence match (species match)</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A1 MG388228</td>
<td>Uncultured archaeon clone MHNAA10, HQ157569</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>Halogeometricum rufum NR_113450</td>
<td>99.8 (92.6)</td>
<td></td>
</tr>
<tr>
<td>A8 MG388235</td>
<td>Uncultured archaeon clone MHNAA25, HQ157584</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>H. rufum NR_113450</td>
<td>98.7 (91.7)</td>
<td></td>
</tr>
<tr>
<td>A9 MG388236</td>
<td>Uncultured archaeon clone MHNAA10, HQ157569</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>H. rufum NR_113450</td>
<td>99.1 (91.8)</td>
<td></td>
</tr>
<tr>
<td>A22 MG388249</td>
<td>Uncultured archaeon clone MHNAA8, HQ157587</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>H. rufum NR_113450</td>
<td>99.3 (90.2)</td>
<td></td>
</tr>
<tr>
<td>A20 MG388247</td>
<td>Uncultured archaeon clone 186ZD11, CU467225</td>
<td>Tunisian multipond solar saltern</td>
<td>H. rufum NR_113450</td>
<td>99.0 (91.6)</td>
<td></td>
</tr>
<tr>
<td>A3 MG388230</td>
<td>Uncultured archaeon clone 186ZD11, CU467225</td>
<td>Tunisian multipond solar saltern</td>
<td>H. rufum NR_113450</td>
<td>99.8 (92.4)</td>
<td></td>
</tr>
<tr>
<td>A4 MG388231</td>
<td>Uncultured archaeon clone 186ZD11, CU467225</td>
<td>Tunisian multipond solar saltern</td>
<td>H. rufum NR_113450</td>
<td>99.8 (92.4)</td>
<td></td>
</tr>
<tr>
<td>A7 MG388234</td>
<td>Uncultured archaeon clone 186ZD08, CU467228</td>
<td>Tunisian multipond solar saltern</td>
<td>H. rufum NR_113450</td>
<td>99.8 (92.6)</td>
<td></td>
</tr>
<tr>
<td>A11 MG388238</td>
<td>Uncultured archaeon clone 186ZD11, CU467225</td>
<td>Tunisian multipond solar saltern</td>
<td>H. rufum NR_113450</td>
<td>99.3 (91.9)</td>
<td></td>
</tr>
<tr>
<td>A2 MG388229</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum NR_113450</td>
<td>99.7 (92.9)</td>
<td></td>
</tr>
<tr>
<td>A13 MG388240</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum NR_113450</td>
<td>99.7 (92.6)</td>
<td></td>
</tr>
<tr>
<td>A15 MG388242</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum NR_113450</td>
<td>99.1 (91.8)</td>
<td></td>
</tr>
<tr>
<td>A16 MG388243</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum NR_113450</td>
<td>99.4 (92.1)</td>
<td></td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Clone Sequence, accession number</th>
<th>Closest sequence match, accession number</th>
<th>Original Source of the closest Sequence match</th>
<th>Closest species, accession number</th>
<th>% Similarity, of closest sequence match (species match)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A18 MG388245</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum nr_113450</td>
<td>99.4 (92.2)</td>
</tr>
<tr>
<td>A21 MG388248</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum nr_113450</td>
<td>99.1 (91.8)</td>
</tr>
<tr>
<td>A23 MG388250</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum nr_113450</td>
<td>99.2 (91.6)</td>
</tr>
<tr>
<td>A24 MG388251</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. rufum nr_113450</td>
<td>99.8 (92.2)</td>
</tr>
<tr>
<td>A6 MG388232</td>
<td>Uncultured archaeon clone MHNA A19, HQ157578</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>Halogrometricum limi nr_113493</td>
<td>99.5 (92.0)</td>
</tr>
<tr>
<td>A10 MG388237</td>
<td>Uncultured archaeon clone MLNAA12, HQ157592</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>H. limi nr_113493</td>
<td>99.2 (92.3)</td>
</tr>
<tr>
<td>A14 MG388241</td>
<td>Uncultured archaeon clone 186ZC08, CU467239</td>
<td>Tunisian multipond solar saltern</td>
<td>H. limi nr_113493</td>
<td>99.4 (92.0)</td>
</tr>
<tr>
<td>A17 MG388244</td>
<td>Uncultured archaeon clone 186ZD01, CU467234</td>
<td>Tunisian multipond solar saltern</td>
<td>H. limi nr_113493</td>
<td>98.4 (91.8)</td>
</tr>
<tr>
<td>A6 MG388233</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>Halobellus inordinatus AB935405</td>
<td>99.7 (92.6)</td>
</tr>
<tr>
<td>A12 MG388239</td>
<td>Uncultured archaeon clone 06245, KJ546103</td>
<td>Hypersaline ponds of a marine saltern, Spain</td>
<td>H. inordinatus AB935405</td>
<td>99.6 (92.2)</td>
</tr>
<tr>
<td>A19 MG388246</td>
<td>Uncultured archaeon clone MHNA A8, HQ157587</td>
<td>Sfax coastal solar salterns, Tunisia</td>
<td>H. inordinatus AB935405</td>
<td>97.4 (90.4)</td>
</tr>
<tr>
<td>A25 MG388252</td>
<td>Uncultured archaeon clone 2009, KJ546110</td>
<td>Aquatic hypersaline environments, Spain</td>
<td>H. inordinatus AB935405</td>
<td>99.3 (90.0)</td>
</tr>
</tbody>
</table>
Figure 2 Nearest-Neighbor phylogenetic tree showing the phylogenetic positions of the bacterial 16S rRNA clone sequences (B1-B25). The closest cultivated bacteria are indicated in bold. The Aral Sea sequences comprising OTUs are collapsed. Closest related environmental sequences are also included. Database accession numbers are given in brackets. Bootstrap values ≥63% are indicated at branch nodes and based on 500 iterations. Positions containing gaps or missing data were excluded from the analysis. The tree was rooted using the deep-branching *Aquifex aeolicus* as outgroup. The bar indicates the number of base substitutions per site.
were identified. Members of this phylum have been found in hypersaline environments of different characteristics around the world including a high mountain salt lake in the Tibetan Plateau and other hypersaline environments (Mutlu et al., 2008). In accordance with studies of similar habitats, our results also indicated an abundance of Actinobacteria and Bacteroidetes, with representatives of genera *Rhodoluna* and *Pontimonas*, and *Phaeodactylibacter*, respectively. Surprisingly, most of the Actinobacterial and Bacteroidetes sequences shared highest similarity with environmental sequences from high mountain salt lakes in the Tibetan Plateau (Zhang et al., 2013). The absence of cyanobacterial sequences is striking and indicates domination of heterotrophic life-style in the Aral Sea.

The Archaeal 16S rRNA clone library indicated that species of the genus *Halogeometricum* are abundant components of the prokaryotic community. This supports the view that *Halogeometricum* is widespread and often dominates within the microbial community in hypersaline environments (Baati et al., 2008; Ghai et al., 2011; Trigui et al., 2011). Next to *Halogeometricum*, representatives of the genus *Halobellus* were the dominant group of Archaea. These observations confirm that representatives of the genera *Halogeometricum* and *Halobellus* are well adapted to extremely high salt concentrations.

Being a hypersaline environment, the Aral Sea has a diverse halotolerant and halophilic microbial community. While it is not possible to predict their metabolism from 16S rRNA sequences alone, the closest phylogenetic affiliations were found mostly to aerobic and anaerobic heterotrophs. As a dominating group, Proteobacteria are known for their ubiquity and metabolic flexibility which includes their ability to tolerate extreme and/or oligotrophic environments, utilize diverse carbon compounds and to maintain aerobic and anaerobic lifestyles. Sulfur-metabolizing bacteria such as members of *Sulfitobacter* were also detected as minor populations and could utilize various inorganic sulfur compounds as electron donors. Bacterial members among *Achromobacter* genus are particularly remarkable in their ability to grow in anaerobic as well as aerobic conditions and are well-known nitrate-reducing organisms. All these microbes are important players for cycling of carbon, nitrogen and sulfur.

The Aral Sea appears to harbor unique microbial populations as a large fraction of 16S rRNA sequences shared less than 97% identity with their closest cultivated relatives and thus likely represent novel species or genera (Tables 2 and 3). This environment can therefore be regarded as a rich source of novel prokaryotic taxa. Only one of the sequences from the clone libraries (B9) was identical (across 1,381 bases) to a previously cultivated organism, an *Idiomarina* sp. isolate from the hypersaline Urmia Lake in Iran (Vahed et al., 2011). Members of this genus are mostly found in seawater, but have also been recovered from hypersaline environments (Choi & Cho, 2005; Kwon et al., 2006;...
Lee, Kim, Yun, & Whang, 2015; Martinez-Canovas, Bejar, Martinez-Checa, Paez, & Quesada, 2004; Vahed et al., 2011; Yoon, Jung, Jung, & Oh, 2007; Zhong et al., 2014). The sequence identity of clone B6 with a bacterium from another hypersaline lake in Central Asia suggests a local clonal distribution and a possible biogeographic population structure. Although the long-standing Baas-Becking postulate, “Everything is everywhere, but the environment selects” (Baas-Becking, 1934), has been a cornerstone hypothesis for the evolution and diversification of prokaryotes for decades and is supported by a number of studies (Brewer, Handley, Carini, Gilbert, & Fierer, 2016; Glöckner et al., 2000; Massana, DeLong, & Pedrós-Alió, 2000); patterns of biogeographic structure among prokaryotes have recently been reported. This has in particular been shown for members of thermo-acidophilic Archaea inhabiting terrestrial acidic hot springs (Reno, Held, Fields, Burke, & Whitaker, 2009; Whitaker, Grogan, & Taylor, 2003), believed to represent isolated islands enabling evolution through an isolation-by-distance mechanism. A similar scenario might apply to hypersaline lakes, although these environments are much larger, with lower geographic barriers, and exchange and dispersal of microbes is thus more easily envisaged, for example, through migrating birds or aerial transportation of dust particles. Dispersal of microbes between Lake Urmia and The Aral Sea, approximately 1,300 km apart is thus plausible. Another interesting issue regarding biogeographic pattern is the abundance of Actinobacteria and Bacteroides sequences from the Aral Sea related to environmental clones from Tibetan high mountain lakes. Two of the Bacteroidetes clones (B2 and B10) share 99.8%-100% identity (maximum one base mismatch) with a number of clones from the Xiaochadan and Chaerhan lakes, located at altitudes of 2,678 and 3,171 m in the Tibetan Plateau, and with salinities of at least 160 and 280 g/L, respectively (Zhang et al., 2013). The long distance and other geographical barriers that is, mountain ranges make direct dispersal of microorganisms from the Plateau of Tibet to the Aral Sea less likely, and may indicate that these organisms represent a Central Asian ecosystem with a non-random distribution.

5 | CONCLUSION

The molecular approach applied in this study has several potential biases. Most importantly, the data set is not large enough for a thorough community analysis, but does provide a reliable first estimate of the major taxa of the microbial community. The colonization of the Aral Sea by extremophiles during its gradual conversion from a freshwater to a hypersaline lake over a period of 50 years is an interesting issue, with a great potential for providing clues to regional and global dissemination of microbes and factors controlling biogeographic structuring of prokaryotes. The current study represents a “snapshot” in time and space, and the microbial diversity may change with seasons and continuing desiccation or rainfall. However, it provides valuable information regarding the diversity of extremophiles that have colonized the Aral Sea and it is the very first report of the microbial diversity in this man-made extreme environment.

ACKNOWLEDGMENTS

We are grateful to Dr. Birte Töpper, University of Bergen, for her excellent laboratory assistance and help in practical guidance of visiting students. The work was supported by the CPEA-LT-2016/10095 grant from the Eurasia program of the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (Diku) and by the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2018VBA002S) for DE.

CONFLICT OF INTERESTS

None declared.

AUTHOR CONTRIBUTIONS

NKB, HP, DE and KD conceived and designed the experiments. NKB, HP and DE did the fieldwork. VS and AH performed the laboratory work. VS, AH, NKB, HP and DE analyzed the results. All authors assisted in writing the manuscript.

ETHICS STATEMENT

None required.

DATA ACCESSIBILITY

The authors declare that the experimental data published in this paper are made accessible upon request for interested readers. All 16S rRNA gene sequences of the new strains can be found under accession numbers MG388228-MG388252 and MG388254-MG388278 in GenBank.

ENDNOTES

1http://emboss.bioinformatics.nl/.
2http://decipher.cee.wisc.edu/.

ORCID

Vyacheslav Shurigin https://orcid.org/0000-0002-5495-0373
Anna Hakobyan https://orcid.org/0000-0003-4085-701X
Hovik Panosyan https://orcid.org/0000-0002-4891-0922
Dilfuza Egamberdieva https://orcid.org/0000-0001-9811-9277
Nils-Kåre Birkeland https://orcid.org/0000-0001-6569-1920

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.